PC 3902 — Elements of Quantum Many-Body Physics, Lectures 3 & 4

Operator H of the total energy
Many-body Hamiltonian H:

H=T+V(R)= —%ivf + iv(r,,j) 3)
Ay (R)={T +V(R)}W(R) =Ty (R)+V(R)y (R)

=——2va Z (v (&

=1
Stationary (time-independent) many-body Schrodlnger equation.

Eigenvalue equation for the energy eigenvalues E, and eigenfunctions
¢,(R)=9,(r,.r,.....r,) of the many-body Hamiltonian H (eq.3)

H¢,(R)=E,9,(R) (4)
Index n simply numerates the distinct energy eigenfunctions ¢, (R). Absolute ground
state of the many-body system at temperature 7 =0 1s denoted by n=0. E; is the
ground-state energy, and ¢, (R) is the ground state wavefunction.

E, < E_ for al other excited states. Ground state is energy eigenstate with the lowest
energy eigenvalues.

(klny={ 0. *(R), (R)dR
:J.V,[V"'Iv(pk*(El’fza---afw)‘l) (7’ NSTRNN )drdr .dr,

There are N 3-dimensional integrals integratmg over r,, r r

Fys s Iy
(k|n) J J _[ o, *(R dx]dy,dzldxza,’yzdz2 dx,dy,dz,
The above is the scalar product of gbk (_) and ¢, (R). 3N -dimensional volume

integral or N three-dimensional volume integrations, where r, is integrated over the
three-dimensional volume V occupied by the many-particle system.

kI = | 6, ()| 19, (R) |dr 6
~ o [I:I¢k (B)] *¢,(R)dR

As Hamiltonian is self-adjoint (Hermitian , symmetric). The asterisk denotes complex
conjugation.

v (R)=Re{y (R)} +ilm{y(R)}

v (R)*=Re{y(R)}-ilm{y (R)}
Multiply (4) with ¢, *(R) and integrate over R:

0. *(R)H9,(R)=E, 9, *(R)9, (R)

[ 0.%(R)A,(R)AR=E,]  6,*(R)9,(R)dR
Using equations (5) and (6),

(k| |n)=E,(k|n)
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I:I(pk (B) =E,0, (E)
Ho, *(R)=E,@, *(R)
So H , equation (3), is real.

All eigenvalues E, of H are real, since H is self-adjoint.
En * = En

[ [A9*(R)]o,(R)R= [ [Ho,(R)]*9,(R)dR = (k|H|n)
= E[ .9, *(R)$,(R)dR = E, (k|n)
- B (k|n)= (k| A n)
~(E,—E.)(k|n)=0
(k|n)y=0 for E, # E,
Eigenfunctions of different eigenvalues are orthogonal.

In general, degeneracy (different eigenfunctions have same energy eigenvalues).

Eigenfunctions can always be made orthogonal to each other by means of the Gram-
Schmidt orthogonalization method. From now on always assume that eigenfunctions

¢,(R) of H forma complete normalized orthogonal system of basis functions of the
Hilbert space.

Orthogonality: (k|n)=0for k #n
0, (R)’|dR =1
If ¢, (R) is not normalized, then ¢, (R):

Normalization: (n|n) = J-

VN

(4.
Orthonormalised: (k|n)=§,, (7)

0 k#n
Kronecker delta 6, = 1 &
=n

Completeness: any wave function y(R) may be expanded in terms of Doy -
v(R)=2Xc9,(R)
Multiply with ¢, *(R) and integrate, "
Ji 0" (B (BB =(kly) = Xic, |, 0. * (B)0, (R)AE

= ch <k|n> = chakn

o= (Klw) =, =(n

)



PC 3902 — Elements of Quantum Many-Body Physics, Lectures 3 & 4

w(R)= §<n|w>¢n(l_e)
(nly)=1 .9, *(R)w(R)dR (8)

1.2 The Many-Body Density Operator

1
Temperature 7 >0, B=——

k,T
N 1 -
W=—eP" (9
~ ©)

This is the density operator. Z is the partition function, and is also known as the sum
of states.

"¢, (R)=e""9,(R) (10)
where H¢ (R)=E ¢, (R). The cigenfunctions of ¢ *" are the cigenfunctions ¢, (R)

of H and its eigenvalues are ¢ #* .

ey (R)=e"Y (n|y)e,(R)
=Y (nlw)e ¢, (R)
=2 (nly)e ™9, (R)
ey (R)= Y e (n|y)g,(R) (11)
z=1r{e""}
where Tr{ } denotes the trace, i.e. the sum of eigenvalues (energies).
z=Y e (12)

-BE,

Wo,(R)="—0,(R) (13)

-BE
eﬁﬂ

Eigenvalues of the canonical density operator W are given by
e_ﬁEn

Tr(W)zZ 7 =%zn:e_ﬁE”=l

n

This gives unit-normalization of the density operator.

Macroscopic thermodynamics (statistical physics) may be obtained from Z, e.g.
F=E-TS=-k,Tn(Z)

where F is the Helmholtz free energy, E = E, + E,, is the total energy and S is the

t

entropy.



