Operator \hat{H} of the total energy

Many-body Hamiltonian \hat{H} :

$$\hat{H} = \hat{T} \pm V(\underline{R}) = -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 + \sum_{i=1}^{N} V(r_{ij})$$
(3)
$$\hat{H}\psi(\underline{R}) = \{\hat{T} + V(\underline{R})\}\psi(\underline{R}) = \hat{T}\psi(\underline{R}) + V(\underline{R})\psi(\underline{R})$$

$$= -\frac{\hbar^2}{2m} \sum_{i=1}^{N} \nabla_i^2 \psi(\underline{R}) + \sum_{i=1}^{N} V(r_{ij})\psi(\underline{R})$$

Stationary (time-independent) many-body Schrödinger equation.

Eigenvalue equation for the energy eigenvalues E_n and eigenfunctions $\phi_n(\underline{R}) = \phi_n(\underline{r}_1, \underline{r}_2, ..., \underline{r}_N)$ of the many-body Hamiltonian \hat{H} (eq. 3)

$$\hat{H}\phi_n(R) = E_n\phi_n(R) \tag{4}$$

Index n simply numerates the distinct energy eigenfunctions $\phi_n(\underline{R})$. Absolute ground state of the many-body system at temperature T=0 is denoted by n=0. E_0 is the ground-state energy, and $\phi_0(\underline{R})$ is the ground state wavefunction.

 $E_0 < E_n$ for all other excited states. Ground state is energy eigenstate with the lowest energy eigenvalues.

$$\langle k | n \rangle = \int_{V^N} \phi_k *(\underline{R}) \phi_n(\underline{R}) d\underline{R}$$

$$= \int_{V} \int_{V} \dots \int_{V} \phi_k *(\underline{r}_1, \underline{r}_2, \dots, \underline{r}_N) \phi_n(\underline{r}_1, \underline{r}_2, \dots, \underline{r}_N) d\underline{r}_1 d\underline{r}_2 \dots dr_N$$

There are N 3-dimensional integrals, integrating over \underline{r}_1 , \underline{r}_2 , ..., \underline{r}_N .

$$\langle k | n \rangle = \int_{V} \int_{V} \dots \int_{V} \phi_{k} * (\underline{R}) \phi_{n} (\underline{R}) dx_{1} dy_{1} dz_{1} dx_{2} dy_{2} dz_{2} \dots dx_{N} dy_{N} dz_{N}$$

The above is the scalar product of $\phi_k(\underline{R})$ and $\phi_n(\underline{R})$. 3N-dimensional volume integral or N three-dimensional volume integrations, where \underline{r}_i is integrated over the three-dimensional volume V occupied by the many-particle system.

$$\langle k | \hat{H} | n \rangle = \int_{V^{N}} \phi_{k} * (\underline{R}) \Big[\hat{H} \phi_{n} (\underline{R}) \Big] d\underline{R}$$

$$= \int_{V^{N}} \Big[\hat{H} \phi_{k} (\underline{R}) \Big] * \phi_{n} (\underline{R}) d\underline{R}$$
(6)

As Hamiltonian is self-adjoint (Hermitian , symmetric). The asterisk denotes complex conjugation.

$$\psi(\underline{R}) = \operatorname{Re} \{ \psi(\underline{R}) \} + i \operatorname{Im} \{ \psi(\underline{R}) \}$$
$$\psi(R)^* = \operatorname{Re} \{ \psi(\underline{R}) \} - i \operatorname{Im} \{ \psi(\underline{R}) \}$$

Multiply (4) with $\phi_k * (\underline{R})$ and integrate over \underline{R} :

$$\phi_{k} * (\underline{R}) \hat{H} \phi_{n}(\underline{R}) = E_{n} \phi_{k} * (\underline{R}) \phi_{n}(\underline{R})$$
$$\int_{V^{N}} \phi_{k} * (\underline{R}) \hat{H} \phi_{n}(\underline{R}) d\underline{R} = E_{n} \int_{V^{N}} \phi_{k} * (\underline{R}) \phi_{n}(\underline{R}) d\underline{R}$$

Using equations (5) and (6),

$$\langle k | \hat{H} | n \rangle = E_n \langle k | n \rangle$$

$$\hat{H}\phi_{k}(\underline{R}) = E_{n}\phi_{k}(\underline{R})$$

$$\hat{H}\phi_{k}*(\underline{R}) = E_{n}\phi_{k}*(\underline{R})$$

So \hat{H} , equation (3), is real.

All eigenvalues E_n of \hat{H} are real, since \hat{H} is self-adjoint. $E_n^* = E_n$

$$\int_{V^{N}} \left[\hat{H} \phi_{k} * (\underline{R}) \right] \phi_{n}(\underline{R}) d\underline{R} = \int_{V^{N}} \left[\hat{H} \phi_{k}(\underline{R}) \right] * \phi_{n}(\underline{R}) d\underline{R} = \langle k | \hat{H} | n \rangle$$

$$= E_{k} \int_{V^{N}} \phi_{k} * (\underline{R}) \phi_{n}(\underline{R}) d\underline{R} = E_{k} \langle k | n \rangle$$

$$\therefore E_{k} \langle k | n \rangle = \langle k | \hat{H} | n \rangle$$

$$\therefore (E_{n} - E_{k}) \langle k | n \rangle = 0$$

$$\langle k | n \rangle = 0 \text{ for } E_{n} \neq E_{k}$$

Eigenfunctions of different eigenvalues are orthogonal.

In general, degeneracy (different eigenfunctions have same energy eigenvalues).

Eigenfunctions can always be made orthogonal to each other by means of the Gram-Schmidt orthogonalization method. From now on always assume that eigenfunctions $\phi_n(\underline{R})$ of \hat{H} form a complete normalized orthogonal system of basis functions of the Hilbert space.

Orthogonality: $\langle k | n \rangle = 0$ for $k \neq n$

Normalization: $\langle n|n\rangle = \int_{V^{N}} |\phi_{n}(\underline{R})^{2}| d\underline{R} = 1$

If $\tilde{\phi}_n(\underline{R})$ is not normalized, then $\phi_n(\underline{R})$:

$$\phi_{n}(\underline{R}) = \frac{\widetilde{\phi}_{n}(\underline{R})}{\sqrt{\langle \widetilde{\phi}_{n} | \widetilde{\phi}_{n} \rangle}}$$
$$\langle \widetilde{\phi}_{n} | \widetilde{\phi}_{n} \rangle = \int_{\mathbb{R}^{N}} |\widetilde{\phi}_{n}(\underline{R})| d\underline{R}$$

Orthonormalised: $\langle k | n \rangle = \delta_{kn}$ (7)

Kronecker delta $\delta_{kn} = \begin{cases} 0 & k \neq n \\ 1 & k = n \end{cases}$

Completeness: any wave function $\psi(\underline{R})$ may be expanded in terms of $\phi_{n(\underline{R})}$.

$$\psi(\underline{R}) = \sum_{n} c_{n} \phi_{n}(\underline{R})$$

Multiply with $\phi_k * (\underline{R})$ and integrate,

$$\int_{V^{N}} \phi_{k} * (\underline{R}) \psi (\underline{R}) d\underline{R} = \langle k | \psi \rangle = \sum_{n} c_{n} \int_{V^{N}} \phi_{k} * (\underline{R}) \phi_{n} (\underline{R}) d\underline{R}$$

$$= \sum_{n} c_{n} \langle k | n \rangle = \sum_{n} c_{n} \delta_{kn}$$

$$c_{k} = \langle k | \psi \rangle \rightarrow c_{n} = \langle n | \psi \rangle$$

$$\psi(\underline{R}) = \sum_{n} \langle n | \psi \rangle \phi_{n}(\underline{R})$$
$$\langle n | \psi \rangle = \int_{V^{N}} \phi_{n} * (\underline{R}) \psi(\underline{R}) d\underline{R}$$
(8)

1.2 The Many-Body Density Operator

Temperature T > 0, $\beta = \frac{1}{k_{\scriptscriptstyle R}T}$

$$\hat{W} = \frac{1}{Z} e^{-\beta \hat{H}} \tag{9}$$

This is the density operator. Z is the partition function, and is also known as the sum of states.

$$e^{-\beta \hat{H}} \phi_n(\underline{R}) = e^{-\beta E_n} \phi_n(\underline{R})$$
 (10)

where $\hat{H}\phi_n(\underline{R}) = E_n\phi_n(\underline{R})$. The eigenfunctions of $e^{-\beta\hat{H}}$ are the eigenfunctions $\phi_n(\underline{R})$ of \hat{H} and its eigenvalues are $e^{-\beta E_n}$.

$$e^{-\beta \hat{H}} \psi(\underline{R}) = e^{-\beta \hat{H}} \sum_{n} \langle n | \psi \rangle \phi_{n}(\underline{R})$$

$$= \sum_{n} \langle n | \psi \rangle e^{-\beta \hat{H}} \phi_{n}(\underline{R})$$

$$= \sum_{n} \langle n | \psi \rangle e^{-\beta E_{n}} \phi_{n}(\underline{R})$$

$$e^{-\beta \hat{H}} \psi(\underline{R}) = \sum_{n} e^{-\beta E_{n}} \langle n | \psi \rangle \phi_{n}(\underline{R}) \quad (11)$$

$$Z = Tr \left\{ e^{-\beta \hat{H}} \right\}$$

where $Tr\{ \}$ denotes the trace, i.e. the sum of eigenvalues (energies).

$$Z = \sum_{n} e^{-\beta E_{n}} \quad (12)$$

$$\hat{W}\phi_{n}(\underline{R}) = \frac{e^{-\beta E_{n}}}{Z}\phi_{n}(\underline{R}) \quad (13)$$

Eigenvalues of the canonical density operator \hat{W} are given by $\frac{e^{-\beta E_n}}{Z}$.

$$Tr(\hat{W}) = \sum_{n} \frac{e^{-\beta E_n}}{Z} = \frac{1}{Z} \sum_{n} e^{-\beta E_n} = 1$$

This gives unit-normalization of the density operator.

Macroscopic thermodynamics (statistical physics) may be obtained from Z, e.g.

$$F = E - TS = -k_B T \ln(Z)$$

where F is the Helmholtz free energy, $E = E_{kin} + E_{pot}$ is the total energy and S is the entropy.